7,317 research outputs found

    Computing NodeTrix Representations of Clustered Graphs

    Full text link
    NodeTrix representations are a popular way to visualize clustered graphs; they represent clusters as adjacency matrices and inter-cluster edges as curves connecting the matrix boundaries. We study the complexity of constructing NodeTrix representations focusing on planarity testing problems, and we show several NP-completeness results and some polynomial-time algorithms. Building on such algorithms we develop a JavaScript library for NodeTrix representations aimed at reducing the crossings between edges incident to the same matrix.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Hierarchical Partial Planarity

    Full text link
    In this paper we consider graphs whose edges are associated with a degree of {\em importance}, which may depend on the type of connections they represent or on how recently they appeared in the scene, in a streaming setting. The goal is to construct layouts of these graphs in which the readability of an edge is proportional to its importance, that is, more important edges have fewer crossings. We formalize this problem and study the case in which there exist three different degrees of importance. We give a polynomial-time testing algorithm when the graph induced by the two most important sets of edges is biconnected. We also discuss interesting relationships with other constrained-planarity problems.Comment: Conference version appeared in WG201

    Pole Dancing: 3D Morphs for Tree Drawings

    Full text link
    We study the question whether a crossing-free 3D morph between two straight-line drawings of an nn-vertex tree can be constructed consisting of a small number of linear morphing steps. We look both at the case in which the two given drawings are two-dimensional and at the one in which they are three-dimensional. In the former setting we prove that a crossing-free 3D morph always exists with O(log⁥n)O(\log n) steps, while for the latter Θ(n)\Theta(n) steps are always sufficient and sometimes necessary.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018

    Self-organized criticality in a model of collective bank bankruptcies

    Full text link
    The question we address here is of whether phenomena of collective bankruptcies are related to self-organized criticality. In order to answer it we propose a simple model of banking networks based on the random directed percolation. We study effects of one bank failure on the nucleation of contagion phase in a financial market. We recognize the power law distribution of contagion sizes in 3d- and 4d-networks as an indicator of SOC behavior. The SOC dynamics was not detected in 2d-lattices. The difference between 2d- and 3d- or 4d-systems is explained due to the percolation theory.Comment: For Int. J. Mod. Phys. C 13, No. 3, six pages including four figure

    Transonic small disturbances equation applied to the solution of two-dimensional nonsteady flows

    Get PDF
    Transonic nonsteady flows are of large practical interest. Aeroelastic instability prediction, control figured vehicle techniques or rotary wings in forward flight are some examples justifying the effort undertaken to improve knowledge of these problems is described. The numerical solution of these problems under the potential flow hypothesis is described. The use of an alternating direction implicit scheme allows the efficient resolution of the two dimensional transonic small perturbations equation

    Simultaneous Orthogonal Planarity

    Full text link
    We introduce and study the OrthoSEFE−k\textit{OrthoSEFE}-k problem: Given kk planar graphs each with maximum degree 4 and the same vertex set, do they admit an OrthoSEFE, that is, is there an assignment of the vertices to grid points and of the edges to paths on the grid such that the same edges in distinct graphs are assigned the same path and such that the assignment induces a planar orthogonal drawing of each of the kk graphs? We show that the problem is NP-complete for k≄3k \geq 3 even if the shared graph is a Hamiltonian cycle and has sunflower intersection and for k≄2k \geq 2 even if the shared graph consists of a cycle and of isolated vertices. Whereas the problem is polynomial-time solvable for k=2k=2 when the union graph has maximum degree five and the shared graph is biconnected. Further, when the shared graph is biconnected and has sunflower intersection, we show that every positive instance has an OrthoSEFE with at most three bends per edge.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Prefazione

    Get PDF
    Le politiche sull’ambiente assumono un ruolo fondamentale e sempre piĂč importante, perchĂ© possono riuscire a modificare quei comportamenti che, se accompagnati a politiche economiche di sostenibilitĂ , possono permetterci di raggiungere un equilibrio tra la salvaguardia delle risorse naturali esistenti, e un loro corretto utilizzo, in modo da proteggerne l’integritĂ . Il volume contiene i contributi presentati in occasione del convegno organizzato dall’AIL e dall’UniversitĂ  degli studi di Palermo su “Cancerogenesi Ambientale” (Palermo 2013)

    A Universal Point Set for 2-Outerplanar Graphs

    Full text link
    A point set S⊆R2S \subseteq \mathbb{R}^2 is universal for a class G\cal G if every graph of G{\cal G} has a planar straight-line embedding on SS. It is well-known that the integer grid is a quadratic-size universal point set for planar graphs, while the existence of a sub-quadratic universal point set for them is one of the most fascinating open problems in Graph Drawing. Motivated by the fact that outerplanarity is a key property for the existence of small universal point sets, we study 2-outerplanar graphs and provide for them a universal point set of size O(nlog⁡n)O(n \log n).Comment: 23 pages, 11 figures, conference version at GD 201

    Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition

    Get PDF
    A geometric graph is angle-monotone if every pair of vertices has a path between them that---after some rotation---is xx- and yy-monotone. Angle-monotone graphs are 2\sqrt 2-spanners and they are increasing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in 2014 and proved that Gabriel triangulations are angle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone---specifically, we prove that the half-Ξ6\theta_6-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex ss to any vertex tt whose length is within 1+21 + \sqrt 2 times the Euclidean distance from ss to tt. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    • 

    corecore